Resolution limitation in speakers clustering and segmentation problems
نویسندگان
چکیده
In unlabeled and unsegmented conversation, i.e. no a-priori knowledge about speakers’ identity and segments boundaries is provided, it is very important to cluster the conversation (make a segmentation and labeling) with the best possible resolution. For low-resolution cases, i.e. the duration of the segment is long; the segments might contain data from several speakers. On the other hand, when short segments are used (high resolution) not enough statistics is provided to allow correct decision about the identity of the speakers. In this work the performance of a system, which employs different segment lengths, is presented. We assumed that the number of speakers, R, is known, and high-quality conversations were used. Each speaker was modeled by a Self-Organizing-Map (SOM). An iterative algorithm allows the data move from one model to another and adjust the SOMs. The restriction that the data can move only in small groups but not by moving each and every feature vector separately force the SOMs to adjust to speakers (instead of phonemes or other vocal events). We found that the optimal segment duration was half-second. The system has a clustering performance of about 90% for towspeaker conversation and over 80% for three-speaker conversations.
منابع مشابه
Image Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach
Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...
متن کاملPersian Printed Document Analysis and Page Segmentation
This paper presents, a hybrid method, low-resolution and high-resolution, for Persian page segmentation. In the low-resolution page segmentation, a pyramidal image structure is constructed for multiscale analysis and segments document image to a set of regions. By high-resolution page segmentation, by connected components analysis, each region is segmented to homogeneous regions and identifyi...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملRetaining Customers Using Clustering and Association Rules in Insurance Industry: A Case Study
This study clusters customers and finds the characteristics of different groups in a life insurance company in order to find a way for prediction of customer behavior based on payment. The approach is to use clustering and association rules based on CRISP-DM methodology in data mining. The researcher could classify customers of each policy in three different clusters, using association rules. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001